The inelasticity correction for liquid water in neutron scattering

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys.: Condens. Matter 34065
(http://iopscience.iop.org/0953-8984/3/22/016)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.147
The article was downloaded on 11/05/2010 at 12:09

Please note that terms and conditions apply.

The inelasticity correction for liquid water in neutron scattering

M-C Bellissent-Funel \dagger, L Bosio \ddagger and \mathfrak{J} Teixeira \dagger
\dagger Laboratoire Léon Brillouin (CEA-CNRS), CEN-Saclay, 91191 Gif-sur-Yvette Cédex, France
\ddagger Laboratoire de Physique des Liquides et Electrochimie du CNRS, ESPCI, 10 rue
Vauquelin, 75231 Paris Cédex 05, France

Received 7 January 1991, in final form 8 March 1991

Abstract

In this paper, we show that an empirical method using a polynomial expansion allows us to perform a reliable inelasticity correction for liquid water studied by neutron diffraction, at three different wavelengths. A unique liquid structure factor has been deduced, even in the case of the mixture $\mathrm{D}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}(10 \% \mathrm{wt})$, and the parameters of the water molecule determined.

1. Introduction

The precise determination of the partial pair correlation functions for liquid water has remained an important goal of liquid state physics for the last decade. Although several groups have made important developments in difficult measurements using the H/D substitution in conjunction with neutron diffraction studies, a definitive solution to this problem has not yet been achieved. During this period there have also been substantial improvements in beam intensity and instrumentation and it has become desirable to repeat some of the earlier experiments with improved statistical accuracy. In this paper, we return to the basic study of liquid $\mathrm{D}_{2} \mathrm{O}$ at room temperature and reexamine the details of the inelasticity corrections in relation to the structural information extracted from the intra- and intermolecular components.

The detailed description of neutron scattering by an assembly of $\mathrm{D}_{2} \mathrm{O}$ molecules is complicated by a number of factors due to inelasticity effects, which are broadly classed under the title 'Placzek corrections', and several groups [1-6] have worked on this topic in an effort to determine the corrections $a b$ initio.

For the analysis of the present data obtained at various wavelengths, we use an empirical method described in earlier papers on liquid DF [7], high-density amorphous ice [8] and, more recently, on ND_{3} [9]. The inelasticity correction obtained is compared with some of the previously mentioned corrections. To check the validity of such a procedure the method is also applied to a $\mathrm{D}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$ (10% wt) mixture.

2. Formalism

The differential scattering cross section for scattering of neutrons by an assembly of fixed nuclei (forming molecules or not) is given in the static approximation by [10]:

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\left\langle\sum_{i j} b_{i} b_{j} \exp \left(\mathrm{i} Q \cdot r_{i j}\right)\right\rangle+\sum_{i j} \frac{\sigma_{j}}{4 \pi} \delta_{i j} \tag{1}
\end{equation*}
$$

where b_{i}, b_{j} are the coherent scattering lengths and σ_{j} the incoherent scattering cross sections. This cross section may be split into a self-part $(i=j)$ and a distinct part:

$$
\begin{equation*}
\mathrm{d} \sigma / \mathrm{d} \Omega=(\mathrm{d} \sigma / \mathrm{d} \Omega)^{\mathrm{self}}+(\mathrm{d} \sigma / \mathrm{d} \Omega)^{\mathrm{d} \text { istinct. }} . \tag{2}
\end{equation*}
$$

The self-part itself can be split into an incoherent and a self-coherent part:

$$
\begin{equation*}
(\mathrm{d} \sigma / \mathrm{d} \Omega)^{\mathrm{self}}=(\mathrm{d} \sigma / \mathrm{d} \Omega)_{c o h}^{\mathrm{self}}+(\mathrm{d} \sigma / \mathrm{d} \Omega)_{\mathrm{nncoh}}^{\text {self }} \tag{3}
\end{equation*}
$$

In the case of pure $\mathrm{D}_{2} \mathrm{O}$:

$$
\begin{equation*}
(\mathrm{d} \sigma / \mathrm{d} \Omega)^{\mathrm{self}}=\left(b_{\mathrm{O}}^{2}+2 b_{\mathrm{D}}^{2}\right)+2 \sigma_{\mathrm{i}}^{\mathrm{D}} / 4 \pi \tag{4}
\end{equation*}
$$

where b_{O} and b_{D} are the coherent scattering lengths relative to oxygen and deuterium atoms, $b_{\mathrm{O}}=0.5805 \times 10^{-12} \mathrm{~cm}, b_{\mathrm{D}}=0.6674 \times 10^{-12} \mathrm{~cm}$, and where $\sigma_{\mathrm{i}}^{\mathrm{D}}=2.032 \mathrm{~b}$ is the incoherent scattering cross section due to deuterium atoms D (the incoherent cross section of oxygen is zero).

The distinct part can be separated into intra-and intermolecular parts corresponding to correlations between atoms within the same molecule and atoms belonging to different molecules, respectively:

$$
\begin{equation*}
(\mathrm{d} \sigma / \mathrm{d} \Omega)^{\mathrm{disstinct}}=(\mathrm{d} \sigma / \mathrm{d} \Omega)^{\text {intra }}+(\mathrm{d} \sigma / \mathrm{d} \Omega)^{\text {inter }} . \tag{5}
\end{equation*}
$$

The differential scattering cross section may thus be expressed by the relation:

$$
\begin{equation*}
\mathrm{d} \sigma / \mathrm{d} \Omega=(\mathrm{d} \sigma / \mathrm{d} \Omega)^{\mathrm{self}}+(\mathrm{d} \sigma / \mathrm{d} \Omega)^{\text {intra }}+(\mathrm{d} \sigma / \mathrm{d} \Omega)^{\text {inter }} \tag{6}
\end{equation*}
$$

The liquid structure factor $S_{\mathrm{M}}(Q)$ is defined from the distinct part of the differential scattering cross section; for liquid $\mathrm{D}_{2} \mathrm{O}$, it is given by:

$$
\begin{equation*}
S_{\mathrm{M}}(Q)=\left[(\mathrm{d} \sigma / \mathrm{d} \Omega)^{\mathrm{distinct}}+b_{\mathrm{O}}^{2}+2 b_{\mathrm{D}}^{2}\right] /\left(b_{\mathrm{O}}+2 b_{\mathrm{D}}\right)^{2} \tag{7}
\end{equation*}
$$

where Q is the scattering wavevector.
For a molecular liquid, the structure factor may be split into two parts:

$$
\begin{equation*}
S_{M}(Q)=f_{1}(Q)+D_{M}(Q) \tag{8}
\end{equation*}
$$

$f_{1}(Q)$ is the molecular form factor and the $D_{M}(Q)$ function contains all the intermolecular contributions.

At very large Q-values, $D_{M}(Q)$ goes to zero. Then, the main contribution to the structure factor comes from $f_{1}(Q)$. However, for hydrogen-bonded liquids, the intermolecular contribution ($\mathrm{d} \sigma / \mathrm{d} \Omega$) inter can be observed at high values of $Q[11]$, and so it is difficult to define the low limit of Q from which this property becomes valid.

The total pair correlation function $g(r)$ is related to the Fourier transform of $S_{\mathrm{M}}(Q)$ by the relation

$$
\begin{equation*}
4 \pi r \rho_{\mathrm{M}}(g(r)-1)=\frac{2}{\pi} \int_{0}^{\infty} Q\left(S_{\mathrm{M}}(Q)-S_{\mathrm{M}}(x)\right) \sin Q r \mathrm{~d} Q \tag{9}
\end{equation*}
$$

where $S_{\mathrm{M}}(x)=\left(b_{\mathrm{O}}^{2}+2 b_{\mathrm{D}}^{2}\right) /\left(b_{\mathrm{O}}+2 b_{\mathrm{D}}\right)^{2}$ is the asymptotic value of $f_{1}(Q)$ at large Q and ρ_{M} is the molecular number density.

The function $g(r)$ is a combination of the different partial correlation functions and includes both the intermolecular and intramolecular distances. It is more convenient to remove the intramolecular terms by subtracting the molecular form factor from $S_{\mathrm{M}}(Q)$ to

Figure 1. Differential neutron scattering cross sections $\mathrm{d} \sigma^{\mathrm{cx}}(Q) / \mathrm{d} \Omega$ for liquid $\mathrm{D}_{2} \mathrm{O}$ at $27^{\circ} \mathrm{C}$ at three incident wavelengths, $0.587 \AA$ (curve a), $0.712 \AA$ (curve b) and $1.116 \AA$ (curve c). The full monotonic curves are the self-scattering cross sections $P(Q)$ calculated using a polynomial expansion. The lower curve (d) gives the structure factor $S_{\mathrm{M}}(Q)$ for liquid $\mathrm{D}_{2} \mathrm{O}$ and shows good agreement after correction between the data obtained at the three wavelengths: (the accuracy is estimated to be about 1%),$- 0.587 \AA ;+, 0.712 \AA ;, 1.116 \AA$.
obtain $D_{\mathrm{M}}(Q)$, which may be Fourier transformed in order to obtain the pair correlation function $g_{\mathrm{L}}(r)$ for the intermolecular terms only:

$$
\begin{equation*}
4 \pi r \rho_{\mathrm{M}}\left(g_{\mathrm{L}}(r)-1\right)=\frac{2}{\pi} \int_{0}^{\infty} Q D_{\mathrm{M}}(Q) \sin Q r \mathrm{~d} Q \tag{10}
\end{equation*}
$$

In this way, no truncation effect arises; moreover, the first peaks due to the intramolecular distances disappear in the low-r range. This property will be used to adjust the flexible parameters in section 4.2.

3. Experimental procedure and data treatment

The experiments were performed at the reactor Orphée, at the Laboratoire Léon Brillouin, on the 7C2 spectrometer [12] which is equipped with a BF_{3} position-sensitive detector with 640 cells. The angular step between two adjacent cells is equal to 0.2° which leads to a maximum diffraction angle 2θ of 128°. The three incident wavelengths used $\lambda_{0}=1.116 \AA, 0.712 \AA$ and $0.587 \AA$ allowed us to cover a range of scattering wave vectors $\left(Q=4 \pi \sin \theta / \lambda_{0}\right)$ extending from $0.35 \AA^{-1}$ to $19 \AA^{-1}$. Liquid $D_{2} O$ was obtained from CEA-ORIS with an enrichment of 99.95% deuterium. The $\mathrm{D}_{2} \mathrm{O}$ sample and the $\left(\mathrm{D}_{2} \mathrm{O}-10 \% \mathrm{H}_{2} \mathrm{O}\right)$ mixture were held in containers of thin-walled vanadium (0.1 mm thick) with internal diameters respectively equal to 8 mm and 6 mm .

The usual measurements of 'sample + container', 'empty container', standard 'vanadium bar' and 'background' were made. After the usual experimental corrections for container scattering, sample attenuation and multiple scattering had been applied, the absolute differential scattering cross sections for liquid $\mathrm{D}_{2} \mathrm{O}$ and for the $\mathrm{D}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}$ 10% mixture at $27^{\circ} \mathrm{C}$ were evaluated. The wavelength and detector zero-angle were obtained from standard calibration measurements using a nickel powder. Figure 1 shows the differential scattering cross sections $\mathrm{d} \sigma_{\mathrm{cor}} / \mathrm{d} \Omega$ of $\mathrm{D}_{2} \mathrm{O}$, measured at three wavelengths.

4. Inelasticity correction

The measured differential scattering cross section in a reactor experiment is given, at constant angle 2θ, and for an incident wavelength λ_{0} by:

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\left(2 \theta, \lambda_{0}\right)=\int_{-x}^{\omega_{0}} \mathrm{~d} \omega \varepsilon\left(k_{\mathrm{s}}\right)\left(k_{\mathrm{s}} / k_{0}\right) S_{\mathrm{M}}(Q, \omega) \tag{11}
\end{equation*}
$$

where k_{0} and k_{s} are the momentum of incident and scattered neutrons, respectively. Q is the momentum transfer: $Q=\boldsymbol{k}_{\mathrm{s}}-\boldsymbol{k}_{0}$.

The energy of the scattered neutron is shifted by an amount $\hbar \omega$ (where \hbar is Planck's constant) from the incident energy due to recoil of the scatterer and other inelastic collision effects:

$$
\begin{equation*}
\hbar \omega=\left(\hbar^{2} / 2 m\right)\left(k_{\mathrm{s}}^{2}-k_{0}^{2}\right) . \tag{12}
\end{equation*}
$$

$S_{\mathrm{M}}(Q, \omega)$ is the frequency-dependent inelastic scattering function:

$$
\begin{equation*}
S_{\mathrm{M}}(Q, \omega)=\sum_{i,!}\left(b_{i} b_{j}+\frac{\sigma_{i}}{4 \pi} \delta_{i j}\right) S_{i j}(Q, \omega) \tag{13}
\end{equation*}
$$

with summation over all atoms i, j in the system. One has:

$$
\begin{equation*}
S_{\mathrm{M}}(Q)=\int_{-\infty}^{+\infty} S_{\mathrm{M}}(Q, \omega) \mathrm{d} \omega . \tag{14}
\end{equation*}
$$

The inelasticity correction is due to the difference between the energy-integrated intensity at constant angle (equation (11)) and the static scattering function $S_{\mathrm{M}}(Q)$ (equation (14)):

$$
\begin{equation*}
\Delta\left(2 \theta, \lambda_{0}\right)=(\mathrm{d} \sigma / \mathrm{d} \Omega)\left(2 \theta, \lambda_{0}\right)-\varepsilon\left(k_{0}\right) S_{\mathrm{M}}(Q) \tag{15}
\end{equation*}
$$

The detector sensitivity function is $\varepsilon\left(k_{5}\right)=1-\mathrm{e}^{-\alpha / k_{s}}$; for the detector used in the experiments, $\alpha=1.765 \AA^{-1}$ and $\varepsilon\left(k_{0}\right)=\varepsilon_{0}$.

4.1. Empirical method

4.1.1. Correction of the self-scattering cross section. For low-mass-atom materials, the evaluation of the self-term (equations (3), (4)) including coherent and incoherent contributions is strongly affected by inelastic processes and leads to a steady fall-off in the overall intensity as 2θ (or Q) is increased (see figure $1(\mathrm{a})$, (b), (c)). Thus, following the Placzek formalism [13], the self-term can be expressed by means of a power series expansion which may be approximated by a polynomial expansion [9], such that:

$$
\left[(\mathrm{d} \sigma / \mathrm{d} \Omega)\left(2 \theta, \lambda_{0}\right)\right]^{\text {self }}=P\left(2 \theta, \lambda_{0}\right)
$$

where

$$
\begin{equation*}
P\left(2 \theta, \lambda_{0}\right)=A+B Q^{2}+C Q^{4}+D Q^{6} . \tag{16}
\end{equation*}
$$

The coefficient D is very small and has a slight effect just for large Q [9]; we do not take it into account, because our maximum Q-value is smaller than $20 \AA^{-1}$. The differential scattering cross section (equation (2)) is then expressed as:

$$
\begin{equation*}
(\mathrm{d} \sigma / \mathrm{d} \Omega)\left(2 \theta, \lambda_{0}\right)=P\left(2 \theta, \lambda_{0}\right)+(\mathrm{d} \sigma / \mathrm{d} \Omega)^{\mathrm{dist}}\left(2 \theta, \lambda_{0}\right) . \tag{17}
\end{equation*}
$$

4.1.2. Recoil corrections. For molecules containinglight atoms such as water, the distinct
term must be corrected for recoil, particularly when the molecules are allowed to move, as is the case for liquids. If $Q_{\text {eff }}$ is the actual momentum transfer modulus, one may write, after Walford et al [14]:

$$
\begin{equation*}
\left(\frac{Q_{\text {eff }}}{Q}\right)^{2}=\frac{1+C_{\mathrm{E}}^{2}(\theta)-2 C_{\mathrm{E}}(\theta) \cos 2 \theta}{2(1-\cos 2 \theta)} \tag{18}
\end{equation*}
$$

with

$$
C_{\mathrm{E}}(\theta)=\left[m_{\mathrm{n}} /\left(M_{\mathrm{eff}}^{\mathrm{r}}+m_{\mathrm{n}}\right)\right]\left\{\cos 2 \theta+\left[\left(M_{\mathrm{eff}}^{\mathrm{r}} / m_{\mathrm{n}}\right)^{2}-\sin ^{2} 2 \theta\right]^{1 / 2}\right\}
$$

where $M_{\text {eff }}^{\mathrm{F}}$ is a recoil effective mass close to the mass of the molecule for liquids or gases and m_{n} is the neutron mass.
4.1.3. Differential scattering cross section for $D_{2} O$. The D_{M} function (equation (8)) can then be expressed, in the case of $\mathrm{D}_{2} \mathrm{O}$, by:

$$
\begin{align*}
& D_{\mathrm{M}}(Q)=\left\{(1 / K) y_{\mathrm{cor}}(Q)-A-B Q^{2}-C Q^{4}+b_{\mathrm{O}}^{2}+2 b_{\mathrm{D}}^{2}\right. \\
&-\left[b_{\mathrm{O}}^{2}+2 b_{\mathrm{D}}^{2}+4 b_{\mathrm{O}} b_{\mathrm{D}} j_{0}\left(Q_{\mathrm{eff}} r_{\mathrm{OD}}\right) \exp \left(-\gamma_{\mathrm{OD}} Q_{\mathrm{eff}}^{2}\right)\right. \\
&\left.\left.+2 b_{\mathrm{D}}^{2} j_{0}\left(Q_{\mathrm{eff}} r_{\mathrm{DD}}\right) \exp \left(-\gamma_{\mathrm{DD}} Q_{\mathrm{eff}}^{2}\right)\right]\right\} /\left(b_{\mathrm{O}}+2 b_{\mathrm{D}}\right)^{2} \tag{19}
\end{align*}
$$

where $I_{\text {cor }}$ is the intensity corrected for container scattering, sample attenuation and multiple scattering, K is the normalization factor, $r_{O D}$ is the intramolecular oxygendeuterium distance and $r_{\mathrm{DD}}=2 r_{\mathrm{OD}} \sin \left(\frac{1}{2} \beta\right)$ for an intramolecular bond angle $\beta, j_{0}(x)=$ ($\sin x / x$) is the zeroth-order spherical Bessel function and $\gamma_{i j}=\frac{1}{2}\left\langle u_{i j}^{2}\right\rangle$ where $\left\langle u_{i j}^{2}\right\rangle$ is the mean square amplitude of the displacement from the equilibrium position due to the normal mode of vibration of the molecule.

As previously mentioned, we took advantage of the fact that the Fourier transform of D_{M} cannot exhibit oscillations in the low- r region to adjust the various parameters; by minimizing the oscillations of $g_{L}(r)$ in the r-range between 0 and $1.6 \AA$, at the smallest wavelength ($\lambda_{0}=0.587 \AA$), we first adjusted the parameters B and C, keeping the other parameters in (19) fixed. K is experimentally known and A-roughly equal to $b_{\mathrm{O}}^{2}+2 b_{\mathrm{D}}^{2}+2 \sigma_{\mathrm{i}}^{\mathrm{D}} / 4 \pi$, see below-is connected to K via the isothermal compressibility χ_{T} by the relation
$S_{\mathrm{M}}(0)=\rho_{\mathrm{M}} k_{\mathrm{B}} T \chi_{r}=\left[(1 / K) I_{\text {cor }}(0)-A+b_{\mathrm{O}}^{2}+2 b_{\mathrm{D}}^{2}\right] /\left(b_{\mathrm{O}}+2 b_{\mathrm{D}}\right)^{2}$.
The values of the parameters related to the molecule, say $r_{O D}, r_{D D}, \gamma_{O D}, \gamma_{D D}$, are taken equal to those in the vapour phase in the first step of the refinement. The second step consisted of leaving $M_{\text {eff }}^{\mathrm{r}}$ and the parameters of the molecule free, and again minimizing the oscillations. Finally all the parameters, including A and K, were submitted to refinement. This procedure allowed us to take into account an eventual residual multiplescattering effect if this last correction was not accurately estimated.

Figure 2 (curve a) shows the Q-weighted D_{M} function finally obtained and the corresponding $g_{\mathrm{L}}(r)$ function (curve b). The values of $D_{\mathrm{M}}(Q)$ are given in table 1. Although $Q D_{\mathrm{M}}(Q)$ seems to exhibit oscillations at about $19 \AA^{-1}$, this does not affect the procedure adopted: we have verified this assertion by multiplying $Q D_{\mathrm{M}}(Q)$ by a damping function. In both cases, the constants A, B, C, K have been found to be identical. We found an intramolecular oxygen-deuteron distance equal to $0.989 \AA$ and a deuterondeuteron distance equal to $1.583 \AA\left(\beta=106.3^{\circ}\right)$ with $\gamma_{O D}=1.72 \times 10^{-3} \AA^{2}$ and $\gamma_{D D}=$ $3.75 \times 10^{-3} \AA^{2}$.

Figure 2. (a) The $Q D_{M}(Q)$ function for liquid $D_{2} O$ at $27^{\circ} \mathrm{C}$. (b) The pair correlation function $g_{L}(r)$ for liquid $\mathrm{D}_{2} \mathrm{O}$ at $27^{\circ} \mathrm{C}$.

Figure 3. The structure factor $S_{M}(Q)$ for a $\mathrm{D}_{2} \mathrm{O} /$ $\mathrm{H}_{2} \mathrm{O}\left(10 \%\right.$ wt) mixture, at $27^{\circ} \mathrm{C}$. Notice the good agreement after correction between the data obtained at two wavelengths: dots. $0.577 \AA$; $-0.7045 \AA$.

The same kind of adjustment was applied to the $\mathrm{D}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}(10 \%$ wt) mixture.
Table 2 gives the values of the parameters for $\mathrm{D}_{2} \mathrm{O}$, at the three different wavelengths, and for $\mathrm{D}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$ mixture at two wavelengths.

As noted in [9], a first expansion of (17) leads to the expression

$$
\begin{equation*}
Q_{\mathrm{cff}}=Q\left[1-\left(m_{\mathrm{n}} / M_{\mathrm{eff}}^{\mathrm{r}}\right)\left(\lambda_{0} / 4 \pi\right)^{2} Q^{2}\right] \tag{21}
\end{equation*}
$$

The ratio $\lambda_{0}^{2} / M_{\text {eff }}^{\mathrm{r}}$, related to the recoil effect and calculated from the data given in table 2 , is found to be nearly constant either for pure $\mathrm{D}_{2} \mathrm{O}$ or for the mixture. Hence the $S_{\mathrm{M}}(Q)$ functions can be compared on the same graph: the liquid structure factors relative to $\mathrm{D}_{2} \mathrm{O}$ and the $\mathrm{D}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}(10 \% \mathrm{wt})$ mixture are given in figures $1(\mathrm{~d})$ and 3 .

For each sample there is a very good agreement after correction between the data obtained at different wavelengths, as shown by the good overlap between the points. Although this method for correcting inelasticity effects is an empirical one, it has the merit of leading to a unique structure factor even in the case of the mixture $\mathrm{D}_{2} \mathrm{O}$ / $\mathrm{H}_{2} \mathrm{O}$ where the hydrogen content ($10 \% \mathrm{wt}$) is important. This last measurement was performed only to check the method; the statistics was poor which explains the difference between the two curves obtained at the two different wavelengths. Further precise measurements have been done in order to extract the partial structure factors of water. Moreover, the method can correct some defects in the experimental data reduction providing that the corrections are monotonic functions of Q.

4.2. Comparison with previous published inelasticity corrections

In order to compare our results concerning the inelasticity corrections with those deduced from well known methods, we have found in each case, for a given wavelength,

Table 1. The intermolecular function $D_{M}(Q)$ of liquid $D_{2} \mathrm{O}$ at $27^{\circ} \mathrm{C}$ (the data given in brackets are data interpolated between the value calculated at $Q=0$ and the first experimental value).

Q	$D_{\text {M }}$	Q	$D_{\text {M }}$	Q	$D_{\text {M }}$	Q	$D_{\text {M }}$	Q	$D_{\text {M }}$
(0.0	-0.93600)	3.9	0.04162	7.8	0.00611	11.7	0.00381	15.	
(0.1	-0.941 31)	4.0	0.03928	7.9	0.00646	11.8	0.00320	15.7	0.0000
(0.2	-0.941 31)	4.1	0.03517	8.0	0.00632	11.9	0.00269	15.8	-0.00007
(0.3	-0.934 96)	4.2	0.02856	8.1	0.00508	12.0	0.00181	15.9	-0.00025
0.4	-0.92702	4.3	0.02053	8.2	0.00409	12.1	0.00090	16.0	-0,00041
0.5	-0.91758	4.4	0.01146	8.3	0.00257	12.2	0.00017	16.1	-0.00064
0.6	-0.89689	4.5	0.00255	8.4	0.00128	12.3	-0.001 12	16.2	-0.000 63
0.7	-0.87282	4.6	-0.00626	8.5	-0.000 40	12.4	-0.00204	16.3	-0.00092
0.8	-0.84421	4.7	-0.01423	8.6	-0.00191	12.5	-0.00294	16.4	-0.001 18
0.9	-0.811 19	4.8	-0.02067	8.7	-0.003 00	12.6	-0.00379	16.5	-0.001 41
1.0	-0.77027	4.9	-0.02502	8.8	-0.004 01	12.7	-0.004 37	16.6	-0.00151
1.1	-0.72232	5.0	-0.02734	8.9	-0.00461	12.8	-0.00436	16.7	-0.001 47
1.2	-0.66702	5.1	-0.02770	9.0	-0.005 19	12.9	-0.00421	16.8	-0.00159
1.3	-0.60200	5.2	-0.02574	9.1	-0.004 76	13.0	-0.00376	16.9	-0.001 71
1.4	-0.51971	5.3	-0.02232	9.2	-0.004 51	13.1	-0.00307	17.0	-0.001 85
1.5	-0.42066	5.4	-0.01829	9.3	-0.004 33	13.2	-0.00275	17.1	-0.001 69
1.6	-0.30486	5.5	-0.01328	9.4	-0.004 25	13.3	-0.00208	17.2	-0.001 42
1.7	-0.17154	5.6	-0.00853	9.5	-0.00416	13.4	-0.001 74	17.3	-0.00124
1.8	-0.031 63	5.7	-0.00476	9.6	-0.003 69	13.5	-0.001 11	17.4	-0.00
1.9	0.07300	5.8	-0.00174	. 7	-0.00327	13.6	-0.000 63	7.5	-0.0
2.0	0.12351	5.9	0.00044	9.8	-0.00264	13.7	-0.000 17	7.6	-0.00
2.1	0.11896	6.0	00217	9.9	-0.00206	. 8	0.00	7.7	-0.00
2.2	0.096	6.1	0.00329	0.0	-0.001	13.9	0.00	7.8	0.00004
2.3	0.06525	6.	0.00391	10.1	-0.00018	14.0	0.00	. 9	0.00
2.4	0.04277	6.3	0.00432	10.2	0.00010	14.1	0.00179	.	. 00
2.5	0.02619	6.4	0.00454	10.3	-0.000 08	14.2	0.00221	. 1	0.00062
2.6	0.01385	6.5	0.00479	10.4	-0.00039	14.3	0.00210	. 2	0.00073
2.7	0.00407	6.6	0.00511	10.5	-0.00067	14.4	0.00248	. 3	0.00091
2.8	-0.00365	6.7	0.00477	10.6	-0.00068	14.5	0.00230	. 4	0.00121
2.9	-0.01578	6.8	0.00391	10.7	-0.00073	14.6	0.00194	. 5	0.00153
3.0	-0.025 52	6.9	0.00342	10.8	-0.00035	14.7	0.00170	18.6	0.00145
3.1	-0.02638	7.0	0.00286	10.9	0.00056	14.8	0.00145	18.7	0.00128
3.2	-0.01626	7.1	0.00255	11.0	0.00158	14.9	0.00126	18.8	0.00133
3.3	-0.00158	7.2	0.00217	11.1	0.00250	15.0	0.00093	18.9	0.00098
3.4	0.01176	7.3	0.00201	11.2	0.00330	15.1	0.00087	19.0	0.00034
3.5	0.02308	7.4	0.00263	11.3	0.00397	15.2	0.00084	. 0	0.00000
3.6	0.03137	7.5	0.00383	11.4	0.00431	15.3	0.00069	. 0	0.00000
3.7	0.03832	7.6	0.00456	11.5	0.00430	15.4	0.00058	0.0	0.00000
3.8	0.04129	7.7	0.00550	11.	0.00416	15.5	0.00032	0.0	0.00

the ratio between the polynomial expansion $P(Q)$ and the calculated self-cross section (d $\sigma^{\text {calk }} / \mathrm{d} \Omega$) ${ }^{\text {self }}$; in figure 4 the results relating to the method of Powles $[1,15]$ and the synthetic model of Granada et al [5, 6] are given.

It appears that the better agreement with the empirical method is obtained with the synthetic model of Granada et al. A nearly constant value of the ratio (see figure 4) is found for the shortest wavelengths for which the determination of the $P(Q)$ polynomial expansion is the more reliable. For $\lambda=1.116 \AA$, a more serious disagreement exists, but in this case we have assumed that a parabolic function can describe fairly adequately a strongly varying function. The departure of the ratio from the value 1 can have several origins. The constant A includes the total self-scattering cross section ($1.551 \mathrm{~b} \mathrm{sr}^{-1}$), the

Table 2. Parameters A, B, C of $P(Q)$ and recoil effective mass $M_{\text {ett }}$ as functions of the incident wavelength for $\mathrm{D}_{2} \mathrm{O}$ and the mixture $\mathrm{D}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}\left(10 \%\right.$ wt), at $27^{\circ} \mathrm{C}\left(1 \mathrm{~b}=10^{-24} \mathrm{~cm}^{2}\right)$.

	$\lambda_{1}(\hat{A})$	$A\left(\mathrm{bsr}^{-1}\right)$	$B\left(b \mathrm{br}^{-1} \mathrm{~A}^{2}\right)$		$C\left(\mathrm{bsr}^{-1} \AA^{4}\right)$		$M_{\text {elf }}^{\dagger}$
$\mathrm{D}_{2} \mathrm{O}$	0.587	1.724	$\begin{aligned} & -4.5968 \\ & 10^{-3} \end{aligned}$	\times	$\begin{aligned} & 4.9024 \\ & 10^{-6} \end{aligned}$	x	12.5
			-6.2271	\times	8.6224	\times	
	0.712	1.736	10^{-3}		10-6		13.1
	1.116	1.75	$-1.657 \times$		$7.349 \times$		31.8
$\mathrm{D}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}(10 \% \mathrm{wt})$			$\begin{aligned} & -1.2631 \\ & 10^{-2} \end{aligned}$	\times	$\begin{aligned} & 1.6772 \\ & 10^{-5} \end{aligned}$	\times	
	0.577	2.905	-1.6351	\times	3.0351	x	9.9
	0.7045	2.911	10^{-2}		10^{-5}		13.8

rotations of the molecule (not taken into account in the synthetic model of Granada et al $[5,6]$) and eventually some residual multiple-scattering correction.

Some further checking of the validity of the polynomial expansion procedure has been done by calculating the moments $\left\langle\omega^{2}\right\rangle^{\prime}$ of liquid $\mathrm{D}_{2} \mathrm{O}$ following a method suggested by Blum et al $[2,3]$. At small angles, the inelasticity correction $\Delta(\theta)$ can be expressed in terms of the derivatives of the frequency moments of the dynamical structure factor of a fluid, $\left\langle\omega^{2}\right\rangle^{\prime},\left\langle\omega^{3}\right\rangle^{\prime}$ and $\left\langle\omega^{4}\right\rangle^{\prime}$:
$\Delta(0)=\left(\varepsilon_{0} / v_{0}^{2}\right)\left\langle\omega^{2}\right\rangle^{\prime}+\left(1 / v_{0}^{3}\right)\left(\varepsilon_{0} / k_{0}-\varepsilon_{1}\right)\left\langle\omega^{3}\right\rangle^{\prime}+\left(\varepsilon_{0} / v_{0}^{4}\right)\left\langle\omega^{4}\right\rangle^{\prime}+\ldots$
The self-differential scattering cross section is written as:

$$
\begin{equation*}
\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\left(2 \theta, \lambda_{0}\right)\right)^{\text {self }}=\Delta\left(2 \theta, \lambda_{0}\right)+\left(\sum_{i j} b_{i} b_{j}+\frac{\sigma_{j}}{4 \pi} \delta_{i j}\right) \tag{23}
\end{equation*}
$$

At the small-angle limit, and for hquid $\mathrm{D}_{2} \mathrm{O}$, it becomes:

$$
\begin{equation*}
\left[(\mathrm{d} \sigma / \mathrm{d} \Omega)\left(0, \lambda_{0}\right)\right]^{\mathrm{self}}=\Delta\left(0, \lambda_{0}\right)+1.551=A \tag{24}
\end{equation*}
$$

where $\left[(\mathrm{d} \sigma / \mathrm{d} \Omega)\left(0, \lambda_{0}\right)\right]^{\text {self }}$ can be approximated by the A-parameter of the polynomial expansion. Table 3 gives the values of ($\mathrm{d} \sigma / \mathrm{d} \Omega$) (0) and those of the zero-angle correction $\Delta(0) / \varepsilon_{0}$ as a function of the incident wavelength λ_{0} (or $k_{0}=2 \pi / \lambda_{0}$).

Thus we can write:
$\Delta(0) / \varepsilon_{0}=\left(1 / v_{0}^{2}\right)\left\langle\omega^{2}\right\rangle^{\prime}+\left(1 / v_{0}^{3}\right)\left(1 / k_{0}-\varepsilon_{1} / \varepsilon_{0}\right)\left\langle\omega^{3}\right\rangle^{\prime}+\left(1 / v_{0}^{4}\right)\left\langle\omega^{4}\right\rangle^{\prime}+\ldots$.
First, we have assumed that

$$
\begin{equation*}
\Delta(0) / \varepsilon_{0}=\left(1 / v_{0}^{2}\right)\left\langle\omega^{2}\right\rangle^{\prime} \tag{26}
\end{equation*}
$$

so, using the relation $1 / v_{0}=m_{\mathrm{n}} / \hbar k_{0}$, equation (26) becomes:

$$
\begin{equation*}
\Delta(0) / \varepsilon_{0} \simeq\left(m_{\mathrm{n}}^{2} / \hbar^{2}\right)\left(\omega^{2} \gamma / / k_{0}^{2} .\right. \tag{27}
\end{equation*}
$$

In figure 5 , we have plotted $\Delta(0) / \varepsilon_{0}$ against k_{0}^{-2} together with the theoretical curve (equation (27)) evaluated from the first derivative of the frequency moments of classical rigid rotators, $\left\langle\omega^{2}\right\rangle^{\prime}=A_{\mathrm{s}}+A_{\mathrm{d}}$ where $A_{\mathrm{s}}=89.77 \mathrm{~b} \AA^{2} \mathrm{ps}^{-2}$ is the self-part and $A_{\mathrm{d}}=$ $-1.1378 \mathrm{~b} \mathrm{~A}^{2} \mathrm{ps}^{-2}$ is the distinct part [3]. There is some departure from the theoretical behaviour, which is more pronounced at the larger wavelength where the uncertainties

Figure 4. (a) The ratio between $P(Q)$ and $\left(\mathrm{d} \sigma^{\text {rala }}(Q) / \mathrm{d} \Omega\right)^{\text {self. }}$. The method of Powles $[1,15]$ has been used for the calculation ($\cdots, 0.577 \AA$; $-\ldots, 0.709 \AA ;-1.112 \AA$). (b) The ratio between $P(Q)$ and ($\mathrm{d} \sigma^{\text {calk }}(Q) / \mathrm{d} \Omega$) ${ }^{\text {sllf }}$. The calculated self-cross section is deduced from the synthetic model of Granada $[5,6](\cdots, 0.587 \AA$; ,$-- 0.712 \AA ;-, 1.116 \AA$).

Figure 5. The zero-angle correction $\Delta(0) / \varepsilon_{0}$ versus k_{0}^{-2}. X: experimental points. The broken line has the theoretical slope proportional to the first derivative of the frequency moments of classical rigid rotators given by $\left\langle\omega^{2}\right\rangle^{\prime}=A_{\mathrm{s}}+A_{\mathrm{d}}$ with $A_{\mathrm{s}}=$ $89.77 \mathrm{~b} \AA^{2} \mathrm{ps}^{-2}$ and $A_{\mathrm{d}}=-1.1378 \mathrm{~b} \AA^{2} \mathrm{ps}^{-2}[2,3]$. The error bars correspond to a precision of 0.5% and 1% in the determination of A, respectively at the two shorter wavelengths and at $1.116 \AA$.

Table 3. The self-scattering cross section ($2 \theta=0$) and zero-angle correction as functions of the incident wavelength, for $\mathrm{D}_{2} \mathrm{O}$ at $27^{\circ} \mathrm{C}\left(1 \mathrm{~b}=10^{-24} \mathrm{~cm}^{2}\right)$.

$\lambda_{0}(\AA)$	$k_{0}\left(\AA^{-1}\right)$	ε_{0}	$[(\mathrm{~d} \sigma / \mathrm{d} \Omega)(0)]^{\mathrm{esf}}\left(\mathrm{b} \mathrm{sr}^{-1}\right)$	$\Delta(0) / \varepsilon_{0}\left(\mathrm{~b} \mathrm{sr}^{-1}\right)$
1.116	5.630	-0.368	1.724	-0.54
0.712	8.825	-0.221	1.736	-0.837
0.587	10.704	-0.179	1.75	-0.966

in the parameters of $P(Q)$ are larger. However, experiments at other wavelengths would be necessary in order to make a more precise comparison with the model of Blum et al [3].

5. Conclusion

In this paper, we have shown that an empirical method is reliable for making corrections for the recoil and inelasticity effects in the case of neutron scattering by water. This method is based on a polynomial expansion of the self-differential scattering cross section and includes recoil effect corrections; it has been successful in the case of a $\mathrm{D}_{2} \mathrm{O}$ /
$\mathrm{H}_{2} \mathrm{O}$ mixture and, in the near future, it will be used in order to determine the pair partial functions for liquid water at various temperatures and at high pressures.

In order to test this empirical method differently, we have attempted to use a neutron pulsed source. Experiments have been performed on $\mathrm{D}_{2} \mathrm{O}$ at $27^{\circ} \mathrm{C}$ on the LAD at ISIS (Rutherford Appleton Laboratory). By taking into account the data provided by the counters set in the small-angle range (that is, in the case where the inelastic effects are smallest), we have compared the data obtained from the two kinds of neutron source facility. Roughly, the results are in good agreement, but the very poor statistics and also the recoil effect in the pulsed neutron measurements prevented us from placing much reliance on this comparison.

Acknowledgments

We acknowledge L Blum and J Dore for fruitful discussions, and M Garawi and R Granada who communicated to us their inelasticity correction calculations.

References

[1] Powles J G 1981 Mol. Phys. 42757
[2] Rovere M, Blum L and Narten A H 1980J. Chem. Phys. 733729
[3] Blum L. Rovere M and Narten A H 1982 J. Chem. Phys. 772647
[4] Thiessen WE and Narten A H 1982 J. Chem. Phys. 772656
[5] Granada J R, Gillette V H and Mayer R E 1987 Phys. Rev. A 365585
[6] Granada J R. Gillette V H and Mayer R E 1987 Phys, Rev. A 365594
[7] Deraman M, Dore J C. Powles J G, Holloway J H and Chieux P 1985 Mol. Phys. 551351
[8] Bellissent-Funel M-C. Tcixeira J and Bosio L 1987 J. Chem. Phys. 87231
[9] Damay P. Leclercq F and Chieux P 1990 Phys. Rev. B 419676
[10] Lovesey S W 1984 Theory of Neutron Scattering from Condensed Matter vol 1 (New York: Oxford University Press)
[11] Narten A H and Sandler S I 1979 J. Chem. Phys. 712069
[12] Ambroise J-P, Bellissent-Funel M-C and Bellissent R 1984 Rev. Phys. Appl. 19731
[13] Placzek G 1952 Phys. Rev. 86377
[14] Walford G, Clarke J H and Dore J C 1977 Mol. Phys. 3325
[15] Garawi M 1987 PhD Thesis Kent University

